
Constructionism 2012, Athens, Greece

 1

The Beauty and Joy of Computing:
Computer Science for Everyone

Brian Harvey, bh@cs.berkeley.edu
Computer Science Division, University of California, Berkeley

Abstract
“The Beauty and Joy of Computing” is a computer science course for undergraduate non-majors
that combines a deep programming experience with lectures, readings, and discussions about
nonprogramming topics such as the social context of computing and the future and limitations of
computing. The course is designed to appeal to a wide range of students, including women and
underrepresented minorities. The programming half of the course uses BYOB, an extension to
Scratch adding first class procedures, lists, and objects. The course has been chosen as one of
the pilots for a coming (2016) high school Advanced Placement exam. Our current work
includes further curriculum development, an NSF-funded teacher preparation program, and the
implementation of SNAP!, a new browser-based version of BYOB.

Keywords
Computer science curriculum, teacher education, programming language, BYOB, Scratch

The Curriculum
Berkeley has a 14-week semester, and our course “The Beauty and Joy of Computing” (BJC)
meets seven hours per week: two lecture hours, four lab hours, and one discussion hour. Out-of-
class assignments include reading, writing, watching videos, and pair programming projects. The
non-programming aspects of the course help dispel the “nerd” image of traditional computer
science courses, and our course has been very successful in attracting students from nontechnical
majors. The course has been taught five times over the past three years, and half of the students
have been women. Almost half of the students in the top fifth of the class have also been women.
Table 1 shows the topic list for the course.
This paper is mostly about the programming part of the course, but it should be emphasized that
our success in attracting and retaining students is due in large part to the social context included
in the curriculum. Our textbook is Blown to Bits (Abelson et al., 2008), which presents some of
the social issues of the Internet era in a style that manages to be both accessible to lay readers and
deeply informed by specific technical issues. The book, like our course, is generally positive
about computer technology, while including a critical appraisal of unexpected consequences.
BYOB (Build Your Own Blocks) was presented at Constructionism 2010 (Harvey and Mönig,
2010). It is based on Scratch, a language designed for 8–12 year old users at MIT (Resnick et al.,
2009), using a novice-friendly drag-and-drop interface, eliminating many of the difficulties
beginners experience in editing a program text. Our extended version adds capabilities
intentionally left out of Scratch, most notably first class procedures, so that we can teach
recursion and higher order functions.

Theory, Practice and Impact

Harvey 2

Week Lectures Labs Discussion

1 Abstraction Broadcast, Animation,
Sound

Welcome

2 3D Graphics, Video Games Loops, Variables,
Random, If

Computer
Anatomy

3 Functions, Programming Paradigms Procedures, Lists
Video Games

(social
implications)

4 Algorithms, Order of Growth Lists, Algorithms

5 Concurrency Complexity,
Concurrency Complexity

6 Recursion

7 Social Implications, Recursion Recursion

8 Social Implications, Human-
Computer Interaction Recursion Social

Implications

9 Game Theory, Industry Guest Applications that
Changed the World Midterm review

10 Artificial Intelligence, Applications
that Changed the World Online Midterm Artificial

Intelligence

11 Lambda and Higher Order Functions

12 Distributed Computing, Academic
Research (guest lecture) Distributed Computing Lambda, HOF

13 Limits of Computing, Future of
Computing Project work Open

discussion
14 Cloud Computing, Summary Project, Online Final Final Thoughts

Table 1. Beauty and Joy of Computing curriculum

All of our course materials are available free of charge through the course web site
(http://bjc.berkeley.edu), including lecture videos, Moodle-based lab units, the BYOB
software, and even the textbook.

Advanced Placement “Computer Science: Principles”
In the United States, curriculum policy is set by each local school district (each city, roughly),
with some input from the state governments. This makes a widespread curriculum reform much
harder to implement than it would be in a country with a national education policy. The only de
facto exception is that secondary schools can offer university-level courses through the Advanced
Placement (AP) program run by the College Board, a private non-profit organization. To ensure
uniform standards, students get AP credit by taking a national standardized AP exam. Changes to
the exam are publicized in advance, and so the change is promptly reflected in every school,

Constructionism 2012, Athens, Greece

Harvey 3

without a complicated reapproval process.
There is a Computer Science AP course, which consists entirely of Java programming at the level
of a first semester university course for CS majors. Java, which is both syntactically and
semantically complicated, is probably not the ideal first programming language for non-
specialists. And, indeed, Computer Science is by far the least popular AP course, and the
percentage of students taking AP CS has been flat while other math and science AP courses, also
traditionally unpopular, have grown dramatically in recent years (Figure 1). Women and
minorities, especially, have avoided AP CS.

Figure 1. Advanced Placement test takers by subject.

Before the Internet and mobile computing platforms, computers were used by specialists, and the
unpopularity of computer science was unsurprising. But most young people today are adept at
computer gaming, social networking, and online media. Sites such as YouTube and Flickr have
made young people creators, not just consumers, of online media.
Because the number of university Computer Science students has not kept up with the demand
for computer programmers, the National Science Foundation (NSF) has initiated several efforts to
make CS courses more popular. They are focusing on the secondary school level because
students’ choices are often already made before they attend university. As one part of this focus,
the NSF has teamed with the College Board to develop a new course, “AP CS: Principles,” that

Theory, Practice and Impact

Harvey 4

will be equivalent to a university breadth course for non-majors, rather than a first course for
majors. (The old AP CS will still be offered.) (CS Principles, 2012.)

The new curriculum is still in development. There are design documents, including a list of
seven “Big Ideas” (programming is one of them) and desired skills outcomes. The College Board
chose five pilot sites in 2010–11, and 20 more sites in 2011–12. Each site is teaching its own
course design, with a range of programming environments, and indeed a range in the extent to
which programming is part of the curriculum at all. We were one of the initial sites. Another
initial site, the University of North Carolina (UNC) at Charlotte, also chose to use a modified
version of our curriculum.
Compared to the published College Board course documents, our version is technically
ambitious; we think we can teach recursion and higher order functions to a general high school
population (or at least to college-bound students). And we think that these powerful ideas are an
important part of the beauty of computing. Seeing the complexity of a fractal tree, and then
seeing the simplicity of the recursive procedure that draws it, is an “aha! moment” you don’t get
from doing a Google search or making a poster in Photoshop, or even from writing computer
programs with no control structure more powerful than a loop.

Can Constructionism Be Standardized?
In the Berkeley BJC course, 30% of a student’s grade is based on midterm and final
programming projects, chosen by each team of two students. (Another 15% comes from an
online component of the midterm and final exams, so programming practice counts for almost
half of the overall grade.) The semester ends with a “show and tell” session in which student
teams present their projects to the entire class. These projects are what give the course most of its
constructionist flavour, although students’ written work is also a public artefact in the form of a
course blog posting.

In this early pilot phase of the project, evaluation standards are up to each participating school.
But when there is an official AP curriculum, it will be measured entirely by an exam, which, the
College Board says, will be “language agnostic”; that is, no particular programming language
will be used. Instead, programming ideas will be tested in the form of pseudocode.

Our own implementation of the course will not change. But we are hoping to spread our
curriculum, including its programming-heavy aspects, through the medium of the AP. A focus
on student-chosen projects doesn’t fit well with a standardized test. Can we influence the coming
AP test so as to encourage a constructionist approach in high school computer science? Or is
“taking over the world” through the AP a Faustian bargain in which only factual knowledge
(including knowledge about programming) will be emphasized in the secondary schools?

Even at Berkeley, we struggle with testing student mastery of a visual, rather than textual,
programming medium. It’s hard for students to write BYOB programs in a test booklet. Our
solution has been to test students’ programming ability in the lab, so that they use computers to
write and submit their answers. (In the written half of the test, we can include pictures of
programs and ask questions such as “find the bug in this program” or “draw the picture that this
program would draw.”) But a nationwide test can’t rely on hands-on computing, both because of
a lack of available computers and for fear of cheating.
More broadly, the entire AP program is a stressful, jumping-through-hoops experience for high
school students who want to attend a high-ranked university, hard to reconcile with any humane
approach to education, let alone Constructionism. In the past, students with a strong interest in a

Constructionism 2012, Athens, Greece

Harvey 5

particular subject might take one or two AP courses. But today, college admissions officers
expect applicants to have taken every AP course offered at their school; many students’ high
school experience is entirely AP. A computer science course offered as an AP will have to be
very joyful indeed to excite students’ enthusiasm.

Teacher Preparation: CS10K
One reason that not many students take the existing AP CS, besides the curriculum itself, is that
many schools do not offer it, because they can’t find qualified teachers. Anyone who can
program computers well enough to teach the course can get a better-paying job programming.
And young people who discover in themselves an interest in programming don’t often choose the
kind of education that leads to a teaching credential. The NSF, in addition to the CS: Principles
curriculum development effort, is sponsoring a drive to prepare 10,000 high school computer
science teachers qualified to teach the new course. Many of these will be existing teachers of
computer applications or, in some cases, teachers of computer assembly and repair. (In many
parts of the country funding for computers is more readily available through vocational-track
budgets than through academic course funding.)

UC Berkeley and UNC Charlotte have been funded by the NSF to prepare teachers through
summer workshops using BJC. We ran one pilot workshop in 2011, and are funded for five
workshops with 20 teachers each during the summers of 2012–14. We’ve already scheduled
three workshops this summer (2012) and are seeking additional funding to expand the program.
School districts or other regional groups that organize 20 participating teachers can apply for a
workshop. We bring experienced workshop leaders to these locations. Each six-week workshop
includes an initial week of face-to-face meetings with leaders and participants, followed by four
weeks during which the participants take our online course from home (watching the lecture
videos and doing the online lab work) with one weekly discussion meeting in which participants
gather face-to-face and work with a Berkeley teaching assistant using Internet videoconferencing.
The sixth week is again face-to-face and focuses on how teachers can translate the curriculum to
the specific conditions (contact hours, student body, and so on) at their schools.
Bringing the workshop to the participants’ location is important. During the 2011 pilot
workshop, we had some remote participants who used videoconferencing to join the group, and in
post-workshop surveys, both those remote participants and the local ones found that the necessary
technology was a distraction, and, more importantly, the remoteness of some participants
interfered with the bonding and collaborative work even of local participants, who reported that
they felt guilty if they got together outside of the scheduled session times without the remote
participants. Ideally, we would fly our teaching assistants to the workshop locations, but doing
that four times for weekly half-day meetings would be very expensive, so we are trying the
compromise of having the actual participants physically gathered together but with a remote TA.

During the four-week online course, we provide online assistance with the lab work. The BJC
course at Berkeley has attracted a small army of course veterans who are enthusiastic enough
about the course to volunteer their time as lab assistants, so we can help summer participants at
very small extra cost.

SNAP!: An Online Reimplementation of BYOB
BYOB was implemented as an extension to the actual Scratch source code, written in Smalltalk.
Scratch was designed with the goal of maintaining a responsive graphical user interface, and

Theory, Practice and Impact

Harvey 6

smooth animation of sprites, rather than with the expectation of composition of functions as a
primary control structure. The result was a series of incremental modifications to nearly every
part of the code. Scratch’s lists were designed for iterative sequences of commands, not for
building up with recursive reporters. These and other factors made BYOB projects very slow,
and debugging BYOB difficult.
BYOB’s developer, Jens Mönig, is currently working on a complete reimplementation, written in
Javascript so that it will run in a web browser. This solves several problems for us. Because it’s
a completely redone design, projects run much faster. Because it runs in a browser, the new
version automatically supports every new platform, including tablets and mobile phones,
although the user interface isn’t currently very usable on the small screen of a phone. Also,
we’ve learned that school IT departments are reluctant to install software they’ve never heard of,
and a browser-based implementation requires no installation. Eventually, running in a browser
will enable new capabilities, such as embedding a project in a web page. The new version is
called “SNAP!”; it was renamed because a few teachers objected to the original acronym.

As of May 2012, there is an alpha-test version, missing many features, but already quite
powerful, available at http://snap.berkeley.edu/run. (While in alpha testing, we
don’t promise that saved projects will remain readable as development continues. We are hoping
for a stable beta version by the time of the conference in August.)

Javascript tries to maintain the security of users’ computers by limiting the ability of downloaded
code to interact with the computer’s filesystem and hardware. This is problematic for us both for
saving projects and for interacting with real-world sensors and robots. The standard Web
solution to the former problem is to store everything “in the cloud,” which means that we would
have to provide user project storage centrally, or else ask schools to run their own SNAP! servers,
defeating the no-software-download advantage. A possible solution would be an optional
software download to interface between SNAP! and the user’s computer.

Further Curriculum Development
The UNC version of the course is different from the Berkeley version, for two main reasons:
UNC has fewer student contact hours per week, and our collaborator there, Prof. Tiffany Barnes,
was previously teaching an introductory course based on video game design in Gamemaker and
wanted to include some of that curriculum in the BJC course. We anticipate that other schools
will have similar need for flexibility in the curriculum.
We therefore plan to build curriculum materials with the same core ideas, but divided into
modules from which each school can select the ones they need. One big example is that, even
though BYOB supports object-oriented programming through sprite inheritance, there is no OOP
curriculum in BJC. A different kind of example is that we are working with a Microsoft-
sponsored program that uses the Xbox Kinect motion sensor as a device to be programmed, and
we plan to develop curriculum modules for that.
We are also working with the Ensemble project (http://www.computingportal.org) to
allow teachers outside of our group to contribute modules.
This raises the question, so far unanswered, of how different a course can be from the Berkeley
version and still be called “BJC.” Probably the modules will be categorized, and there will be
minimum standards both in the big ideas of programming and in the social context of computing.

Constructionism 2012, Athens, Greece

Harvey 7

Acknowledgements
The BJC design team at Berkeley includes its instructor, Dr. Daniel Garcia (Principal Investigator on our
NSF grants), and several graduate and undergraduate students, especially Colleen Lewis, Luke Segars, and
Glenn Sudgen. Dr. Nathaniel Titterton is our lead education researcher. High school teachers Josh Paley,
Sean Morris, Ray Pedersen, and Eugene Lemon have participated in the development and testing of the
curriculum. Prof. Tiffany Barnes is our collaborating Principal Investigator at UNC Charlotte. BYOB
was developed, and SNAP! is being developed, by Jens Mönig.

This work has been funded by NSF grants 1138596 and 1143566, and by Lockheed Martin.

References
Abelson, H., Ledeen, K., and Lewis, H. (2008). Blown to Bits: Your Life, Liberty, and Happiness After the
Digital Explosion, Addison-Wesley.

Harvey, B. and Mönig, J. (2010). “Bringing ‘No Ceiling’ to Scratch: Can One Language Serve Kids and
Computer Scientists?”, Constructionism 2010.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y. (2009). Scratch: Programming for All.
Communications of the ACM, vol. 52, no. 11, pp. 60-67 (Nov. 2009).

